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Abstract 
 
A concept and preliminary feasibility analysis of a divertor with the third-order poloidal field null is 

presented. The third-order null is the point where not only the field itself but also its first and second 

spatial derivatives are zero. In this case, the separatrix near the null-point has eight branches, and the 

number of strike-points increases from 2 (as in the standard divertor) to six.  It is shown that this magnetic 

configuration can be created by a proper adjustment of the currents in a set of divertor coils situated at a 

significant distance from the null. If the currents are somewhat different from the required values, the 

configuration becomes that of three closely-spaced first-order nulls. Analytic approach, suitable for a 

quick orientation in the problem is used. Potential advantages and disadvantages of this configuration are 

briefly discussed.  

 Recently a divertor where the poloidal field null is close to the second-order null has 

drawn some attention both in theory (e.g., [1, 2]) and experiment (e.g., [3-5]). The second-order 

null means that not only the poloidal field (PF) but also its first spatial derivatives turn zero at the 

same point [1]. Alternatively, one can say, that the second-order null is formed as a result of 

merging of two first-order nulls [6, 7].  

 The second-order null leads to a formation of the separatrix with six branches instead of 

the four branches as in the first-order null. The number of the strike-points increases from two to 

four. The poloidal field strength Bp near the second-order null scales as r2 with the distance r 

from the null, compared to the linear dependence, Bp~r, for the first-order null.  This leads to 

significant changes of the field structure not only on the open but also on the closed field lines. 

In particular, the safety factor and the magnetic shear inside the separatrix increase significantly 
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on the closed flux surfaces near the separatrix [1, 2]. Another related change is a significant 

increase of the prompt ion loss from the area just inside the separatrix [8]. 

 Other interesting concepts for improving the performance of the divertors are represented 

by the concepts of an X-divertor [9, 10] and the super-X divertor [11]. In the first of them, 

additional dipole coils are used in the divertor legs of a standard X-point divertor to create a 

significant poloidal field reduction near the strike points – see, e.g.,  Fig. 1d of Ref. [10]. In the 

second one, the outer divertor “leg” is stretched (by means of additional PF coils) to a larger 

major radius R, to exploit the proportionality of the wetted surface area to R. One can 

additionally expand the fluxtube near the strike point in the same way as in an X-divertor.  

 The present article is based on the same general idea as a snowflake configuration, but 

extends it to the situation of the next, third-order, PF null or to an approximate third-order null. 

We demonstrate that this can be done with a reasonable set of coils. The potential benefits 

include an easier onset of the convection around the PF null discussed in Refs. [12] and [13], and 

an appearance of additional strike points. As with the snowflake, maintaining an exact third-

order null is impossible, since in the parameter space (made of the plasma and PF coil currents) it 

lies on the zero-measure manifold, so that a small change of the currents in the coils or in the 

plasma would lead to the splitting of the third-order nulls to three first-order nulls. On the other 

hand, if the nulls are situated at a small distance from each other, the situation for the external 

observer does not differ from an exact one (similarly to the snowflake). 

 For the distance r from the third-order null (or from the three narrowly-spaced first-order 

nulls)  small compared the major radius R, r<<R, the effects of the toroidal curvature are small 

(Cf. [1], [7]) and one can consider a planar (x,y) geometry (Fig. 1). We will describe the 

magnetic field by the flux-function V (x, y)  such that Bx = !V /!y ; By = !"V /"x . Assuming that 
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the currents in the divertor zone are negligibly small, so that !"B = 0 , we find that V satisfies 

the Laplace equation, !2V = 0 .  If we reach an exact third-order null, the flux function should 

scale as r4.    Then,   if    one    substitutes    this    dependence  into  the  Laplace  equation,

(1 / r)!(r!V /!r)+ (1 / r2 )(!2V /!! 2 ) = 0 , one finds that the dependence on the azimuthal angle !  

is cos4(! !!0 ) , so that V = const ! r4 cos4(! "!0 )  (we omit an arbitrary additive constant). The 

angle !0 characterizes the orientation of the branches of the separatrix.  Obviously, for the just 

described flux function the magnetic field strength | Bp |= Br
2 +B!

2 = 4const ! r3 does not depend 

on the angle ! , it depends only on r. 

 We assess the general reasonableness of the constraints on the PF coil location in the 

simple model where the plasma is approximated by a single-wire current situated at the distance 

a from the desired null, whereas the divertor coils would be described by three wire system 

(Fig.1). Compared to the snowflake, where the second-order null in the similar configuration 

could be created by two divertor currents, we need here three currents, because of an additional 

constraint on the field is imposed (zero second derivative of Bp). We start from assessing an 

“exact” 3rd order null geometry and then move on to describe the deviations from it. 

 The problem contains a number of input parameters: the plasma current Ip, the current I1   

in each of the two horizontally-shifted coils, and current I2  in the vertically-shifted coil; in 

addition, we have four geometrical parameters, a, b, c, and d (Fig. 1).  

 For the symmetry reason, the separatrix branches in the configuration of Fig. 1 will be 

symmetric with respect to the vertical axis. Note the sign convention described in a figure 

caption. Obviously, in order for a PF coil not to be inside the confined plasma, the parameter c 

should be positive. The parameter b is positive when the pair of the horizontally-spaced coils is 
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situated below the null. The parameters d and a are also positive. In what follows, we normalize 

the currents I1,2 to the plasma current Ip, and the parameters b, c and d to the distance a. Still, we 

have five input parameters: two normalized currents and three normalized distances, and this 

seems to make the problem not quite amenable to the analytic approach that we pursue here. 

However, as has been mentioned above, the field strength |Bp| does not depend on the direction. 

This allows us to consider the radial dependence of the x-component only along the y axis. There 

is no need to find all the numerous cross derivatives to guarantee that the field indeed scales 

properly.  

 So, we impose the following three constraints at x = y = 0 : Bx = 0 ; !Bx /!y = 0 ;

!2Bx /!y
2 = 0 . For the configuration of Fig. 1, the field strength on the vertical axis is (in the 

CGS units that we use throughout the paper): 

 Bx (y) =
2
c

I
a! y
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2I1(b+ y)
d 2
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Thus far we have been using the dimensional quantities. Imposing the aforementioned 

constraints on the field strength and its derivatives at y=0, we find three equations relating the 

five dimensionless parameters. By choosing two of them, specifically b and d, as input 

parameters, we find, after some algebra, the other three parameters (now in the normalized 

units): 
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Examples of the flux surfaces for d=0.5 are presented in Fig. 2 for several values of b. The 

corresponding values of the divertor coil currents are shown in Table 1. What is remarkable here 

is that the coils can be situated quite far from the divertor null and that the divertor currents are 

relatively moderate. For a tokamak with a~7 m, one could have d~3.5 m, c~1.5 m. One has of 

course to remember that the magnetic configuration depicted in Fig. 1 does not provide a correct 

magnetohydrodynamic (MHD) equilibrium (as most of the few-wire models). In the context of 

the snowflake divertor this point was correctly made by Lackner and Zohm [14]. So, our 

discussion here just illustrates the possible structure of the magnetic field in the divertor area and 

the sensitivity of the configuration to possible inaccuracies in the values of the currents. 

 The shape of the separatrix shown in Fig. 3, with one main “petal” and three divertor 

“petals” resembles a four-petal cloverleaf, which we will use further for designation of the 

configuration.  

 Obviously, in the cloverleaf divertor there are six strike points that can be used for 

collecting the heat flux, compared to four in the snowflake divertor and two in the standard 

divertor. It is also obvious that the flux expansion near the null is stronger than in either standard 

or snowflake divertor. The plasma safety factor q on the closed flux surfaces inside the separatrix  

becomes much higher: it diverges as |!V |!1/2 where δV is the poloidal flux minus the flux at the 
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separatrix, compared to ln |!V |!1  and  |!V |!1/3  for the standard null and the snowflake divertor. 

The magnetic shear just inside the separatrix also becomes much higher. The connection length 

on the open flux surfaces increases significantly, as does the volume of the SOL plasma near the 

null.  

 An important parameter that characterizes the size of the zone of a low poloidal field near 

the null-point is a coefficient in the expression Bp = const ! r
3  in the vicinity of the null. The 

radius r will be normalized to the minor plasma radius for which we will use a rough estimate of 

a/2. It is convenient to normalize the field near the null to the poloidal field at the last closed flux 

surface at the midplane, Bpm. As a characteristic value for it we use Bpm=2Ip/c(a/2). In other 

words, we represent the field near the null in the form   

  Bp = K(2r / a)
3Bpm ,        (5)  

where K is a dimensionless coefficient. It can be found by taking the third derivative of Eq. (1) at 

y=0 and substituting into it the values of c, I1 and I2 from Eqs. (2)-(4). This dimensionless 

coefficient will depend only on the normalized values of b and d. By taking the third derivative 

of Eq. (1), one finds the following expression for K in terms of our basic parameters b and d: 
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where c, I1 and I2 are defined by Eqs. (2)-(4), and b and d are normalized to a. The values of 

coefficient K for several basic parameters b and d are presented in Table 1.  

 Consider as a reference the case of d/a=0.5 and b/a=0.1. For it, K=8.96. According to Eq. 

(5), it means that the magnetic field will be 30 times less than Bpm in a volume of a radius 

r~0.08a around the null. For a facility with a~ 7m one would have d~ 3.5 m and c ~ 1.4 m the 
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field will be that low for r< 55 cm. The importance of this low-Bp zone has been highlighted in 

Refs. [12, 13] in conjunction with the mechanism of convective spreading of the plasma flow 

over all the divertor legs and widening of the plasma stream in each leg.  

 Another important issue is that of the accuracy to which one should maintain the 

magnetic configuration: change in any of the plasma parameters that would break the conditions 

(2)-(4) will, generally speaking, cause the splitting of the third-order null into three closely 

spaced first-order nulls, very much like this occurs in the snowflake divertor [1, 2, 6], where an 

exact second-order null splits into two first-order nulls. 

 Calculations can be significantly simplified by representing the magnetic field in the 

complex form, F(z)=Bx(x,y)+iBy(x,y), with z being a complex coordinate, z=x+iy. We denote the 

complex field by F, not to confuse it with a real vector Bp.  As the magnetic field is both curl-

free and divergence-free, one can introduce the complex potential W(z)=U+iV related to F by 

F=dW*/dz, so that Bx=-Re(dW/dz),  and By=-Im(dW/dz). The Cauchi-Riemann condition for W 

then yields that Bx = !"V /"y;By = "V /"x , so that V is a flux function, see, e.g., [15].  In the 

complex representation, one has, in particular, instead of Eq. (5): 

 F = iK(2z / a)3Bpm .        (7) 

The coefficient “i” is introduced to have the same orientation of the separatrix branches as in Fig. 

2. To be specific, consider the case where the currents in the divertor coils correspond to the set 

of conditions (3), (4), but the plasma current and its position vary by some small amounts. This 

situation would mock up a scenario where the control system is set to maintain some constant 

prescribed currents in the divertor coils, whereas the plasma has some freedom to move.  

 In the complex representation, the magnetic field of the plasma current is equal to 

 Fp(z)= i(I p +!I p / 2c)(z! z0 !!z)
!1 = i(Bpma / 2)(z! z0 !!z)

!1 ,  (8) 
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where z0=(0, a), and !z = (!x,!y) . Adding the unperturbed fields of the divertor coils, and 

making expansion leading to Eq. (7),  one finds that around the null-point the field can be 

described as 

 
F(z) = iBpm
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The magnetic field nulls are determined from the condition F(z)=0. There are three such nulls, 

forming an equilateral triangle with the center at z=0: 
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and angle η determines the orientation of the triangle, 
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 The distance from z=0 to the nulls, ρ, scales as a cubic root of the deviations of the 

plasma current and its position from the values to which the divertor currents are tuned to. The 

presence of this splitting is insignificant as long as we are interested in phenomena occurring at 

the scales exceeding ρ. As an example, consider the case mentioned after Eq. (6). Substituting 

the same values of a and K into Eq. (11), we find that ρ is less that 70 cm if the current mismatch 

is less than 6%. This is well within the capability of the PF control systems.  

 Of some interest is also a structure of the poloidal magnetic field in the area around the 

origin, where the three nulls are situated. In particular, we will be interested in the structure of 
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the separatices and flux surfaces in this area. We will normalize all the distances around the null 

by the parameter ρ and will not write any numerical coefficient in front of the expression for the 

magnetic field, as the shape of the flux surfaces does not depend on this coefficient. So, we use 

an expression 

 F = i(z! z1)(z! z2 )(z! z3)        (13) 

with zk defined by Eq. (10) with ρ=1. The nulls satisfy several simple relations: 

 z1 + z2 + z3 = 0 ; z1z2 + z1z3 + z2z3 = 0 ; z1z2z3 = exp(3i!) .   (14) 

Therefore, the function (13) can be re-written as 

 F = i z3 ! exp(3i!)"# $% .        (15) 

With that, the complex potential becomes 

 W*= i z
4

4
! zexp(3i!)

"

#
$

%

&
'        (16)  

Taking the imaginary part of W*, one finds the flux function V: 

 V =
x4 ! 6x2y2 + y4

4
! xcos(3!)! ysin(3!)       (17) 

The condition V=const determines a certain flux surface. To find the separatrices passing through 

the null-points of the magnetic field one has to equate expression (17) consecutively to its values 

at the corresponding null-points of the magnetic field. Using Eq. (15), one finds the following 

equations for the separatrices: 

 V (x, y) = ! 3
4
cos 4! ! 2"

3
k

"

#
$

%

&
' ,       (18) 

where V is defined by Eq. (17). They are shown in Fig. 3a for η=0.2. This is a typical structure of 

the separatrices near an “approximate” third-order null. If, however, the distance ρ between the 
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three nulls is small (i.e. the deviations from an exact clover-leaf configurations are small), then at 

larger distance from the null we recover 8 branches of the separatrix (Fig. 3b).   

 In summary: the 3rd-order PF null (generating a “cloverleaf” four-petal structure) can be 

created by PF coils situated at a significant distance form the null, certainly outside the divertor 

structure. The potential of this configuration is related to the formation of a large zone of the 

poloidal field around the null (or a set of closely-spaced first-order nulls). This is very favorable 

for heat-flux spreading between all six divertor legs and broadening of the plasma flow in each 

leg [12, 13]. Concerns are related to the control problems, as one would have now to bring 

together three nulls (not two as in a snowflake). Another problem is related to the possibility to 

deploy the PF coils outside the toroidal field coils in reactors. Analysis of benefits vs. difficulties 

will determine the feasibility of this configuration for the existing and future devices.  

 This work was performed under the auspices of the U.S. Department of Energy by 

Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory, under 

Contract  DE-AC52-07NA27344. 
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Fig. 2 The structure of the separatrices near the null-point for d=0.5a. The parameter b and the 
normalized currents are presented in Table 1. If one includes into picture the upper part of the 
separatrix, it starts looking as a four-petal clover leaf (see inset at the top). So, a more concise 
name for this configuration could be a “cloverleaf divertor.” 
  

Fig. 1 The four-wire model. The plasma current Ip is at the distance of a from the PF null-point 
situated at x=0, y=0. Two poloidal field coils are situated symmetrically with respect to the 
vertical axis; one coil lies on the axis. The signs in the brackets representing the coordinates of 
the currents are chosen to have parameters a, b, c and d positive. The major axis is to the left 
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                a)                                                b) 

     
 

Fig. 3 Structure of separatrices near the origin in the case η=0.2.  The confined plasma is situated 
in the upper-most zone. The distances are normalized to the parameter ρ, Eq. (11). The panels a) 
and b) illustrate the structure of the null region at two “magnifications”: In panel a) a close-up 
view is presented, whereas in panel b) a 3-time broader domain is shown. One sees that at larger 
distances from the origin, the system becomes essentially indistinguishable from an “exact” 
cloverleaf divertor, with eight branches of the separatrix clearly visible.  
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Table 1 The parameters of the divertor coils for the cases illustrated by Fig. 3 
 
 

color b c I1 (current per 
conductor) 

I2 K 

 
red 

 
0.14 

 

 
0.0954 

 
0.2369 

 
0.0183 

 
12.86 

 
purple 

 
0.12 

 

 
0.1222 

 
0.2197 

 
0.0384 

 
10.62 

 
blue 

 
0.10 

 

 
0.1522 

 
0.1987 

 
0.0688 

 
8.96 

 
green 

 
0.08 

 

 
0.1899 

 
0.1747 

 
0.1129 

 
7.54 

  
 


